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LAIR: Flux Line-Segment 
for Advection and Interface ~~c~~st~~~t~~~ 

N. .hHGRIZ AND J. Y. PO0 

A computational technique for soiving fluid problems with fret surfaces and interfaces is 
presented The conventional cell volume fraction approach is employed for tracking the inter- 
faces. However, for surface advection and its reconstruction, a new arid more accurate FLAIR 
(flex line-segment model for advection and interface reconstructions algorithm is developed. 
The surface is approxtmated by a set of line segments fitted at the boundary of every t%o 
neighboring computational cells. A criterion is developed for identifying :he iint-segment 
orientation by inspecting the cell volume fractions. The nrn ce!i volume frac;ion Field is 
obtained by integrating the advected area underneath the interface tinesegment. As a: 
example, this tcchniquc is applied to the capillary driven viscous flow of an initiahy elliptic. 
tat-dimensional fluid zone. The problem is possd mathematically as a soiution of the 
Navier-Stokes equations with moving free surface boundar:; conditions. The dam$ng motion 
of the fluid zone is observed through transport of the free surface. which is related to the 
inst.antaneoas internal velocity field under the infi~uence of surface tension and vi~ous 
forces. ‘(- L991 Academic Press Inc. 

Analyticai treatment of free surfaces and interfaces is an issue of major impor- 
tance in many of the fundamental and practical fluid mechanic problems. The 
mathematical description of fluid interface transport involves the solution of the 
governing equations of motion on the fluid domain, part of which includes inter- 
faces. The exact locations of these interfaces are not known a priori and must be 
determined as part of the solution of the transport equations. Numerical description 
of free surface flows and interfaces is notoriously complicated due to the difficulties 
associated with the discrete representation of the interfaces, their tcmporel evsi~- 
tion and spatial convolution, and the manner in which the boundary conditions are 
imposed. 

There are variety of numerical methods for treating fluid problems wit-h inter- 
faces. The most common one is the boundary-integral technique [I-3]. owever. 
this technique is currently rcstrictcd to the hmiting cases of either zero Reynokk 
number, or inviscid irrotational flows. Other methods. available for handling 
free-surface flow problems are the finite-element methods C&5], the meehods ?1.kg 
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boundary-fitted orthogonal coordinates [7-91, and Lagrangian methods [ 10, 111. 
At present, these techniques cannot handle surface foldings and surface merging 
and their application to very deformed surfaces has yet to be demonstrated. 

A totally different category of numerical techniques which have the potential for 
handling large surface deformations and surface folding and merging is that of 
volume tracking methods. These methods use a volumetric progress variable, such 
as marker particles in the marker and cell (MAC) technique [ 12-151, and the cell 
volume fraction in the volume of fluid (VOF) technique [16-191, for Lagrangian 
transport of the interfaces. The marker and cell method involves Eulerian flow-field 
calculations and Lagrangian liquid-particle movements. The velocity of a marker is 
found by taking the average of the Eulerian velocities in its vicinity. One difficulty 
in using the MAC method is the possible creation of artificially high or low marker 
number densities in the cells, due to the irregularity of the flow field. 

The volume of fluid (VOF) method is much easier to use and less computa- 
tionally intensive. Two major problems arise when the interface is represented by a 
fractional volume parameter. One is how to identify the exact surface location and 
the other is how to advect the surface. Several techniques have been introduced for 
moving the volume fraction field. A common one is the so-called donor-acceptor 
technique [19-211. This technique is based on describing a surface orientation and 
then moving the surface with the velocity normal to that orientation. In the 
donor-acceptor technique, the surface cell is assumed to be either horizontal or 
vertical. The decision regarding the orientation is made based on studying the 
neighboring cells. Once the surface orientation is identified, different techniques can 
be used for its advection [22-241. The donor-acceptor technique, which is used in 
the VOF method, emphasizes control of interface diffusion rather than control of 
the liquid fraction in a cell. Therefore, ad hoc techniques must be designed to 
remove “bad” points. For example, cells having liquid fractions either less than zero 
or greater than unity are corrected by redistributing liquid around them. 

Other techniques have also been reported [25, 261, which have improved the 
accuracy of the surface reconstruction and its advection in VOF based codes. For 
instance DeBar [25], and Youngs [26] have used sloped line segments in each cell 
rather than horizontal and vertical ones as was discussed for the donor-acceptor 
method. The interface slope in each cell is obtained by inspecting the volume frac- 
tions of the neighboring cells. The slope of a line that will cut through two or three 
neighbor cells and will result in the correct cell volume fractions is obtained. The 
sloped interface is then convected by the local velocities at the cell. Unfortunately 
DeBar [25] and Youngs [26] have not reported the details of their techniques for 
calculating the surface slopes. Therefore, no further discussion on their methods can 
be given here. 

Clearly, the accuracy of the techniques that use sloped line segments to represent 
the interface is crucially dependent on the method of calculating the slope of this 
line segment. In this paper we describe a technique which represents the fluid inter- 
face by a set of sloped line segments which are fitted at the boundary of every two 
neighboring cells. A rigorous technique is developed for finding the slope of the line 
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segment and the advection of the interface. The method is demonstrated by 
considering several free surface problems. 

FLAIR ALGORITHM 

Consider an Eulerian square mesh system, as s own in Fig. I, and an actual 
curved surface cutting through it. Lets assume that his curve is the free surface of 
a liquid below it in a 2D flow field. Therefore, one can define an area (or volume! 
fraction parameter, f, that can take values between ‘I and 0. That is .f= 0 represents 
an empty cell, J’= I a full cell, and 0 <f< 1 a surface cell. We will call a cell with 
f> 0 a “ wet cell.” We propose to solve the following problem. Given theSt3eld and 
the velocity components u and 11 in x and y directions, respectCAy, first, what is the 
surface shape and its curvature and, second, how does the surface move. In our 
prevmus paper on this topic [27], we proposed a second-order accurate technique 
for calculating surface curvature, given the f field. Here we are introducing a new 
algorithm for the calculations of advection and reconstruction of surfaces. 

An mterface can be viewed as composed of line segmens if the grid system is fine 
enough. Locally this line segment can be forced at the cell boundary by examining 
the area fractions of the two adjacent cells. The distinct feature of this method is to 
find the slope of this line segment based only on two neighboring volume fractions. 
Figure 2 is presented to amplify the differences between FLAI 
line segment approaches. In conventional line segment approaches the actual 
surface (Fig. 2a) is represented by a set of horizontal and vertical lanes. For 
instance in SLIC method by Noh [S] the surface is reoriented in a manner shown 
in Figs. 2b and c. Where, all the surfaces are considered to be vertical for :lux 
calculations in the x-direction and horizontal for flux calculations in the ,y-direction. 
In VOF method by Nichols et nl. [4] the surface orientation is also considered to 
be either verticai or horizontal (Fig. 2d), except that in their aigorithm the decision 

FIG 1. A typicai volume fraction kiti. 
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e f 
FIG. 2. Comparisons of different interface representation techniques, 

on the type of surface orientation is made according to a weighting criterion based 
on the cell’s neighboring volume fractions. In Youngs’ [26] method the line- 
segment has a slope (Fig. 2e), but it is fitted inside each cell. Therefore, the flux 
calculations in their method will resemble the previous techniques with slight 
improvement in accuracy. In the FLAIR technique the line segments are drawn at 
the cell boundaries as shown in Fig. 2f. When moving the interface, the fluid under- 
neath the trapezoid generated by each line segment is moved with the velocity given 
at the cell boundary. We will show that this technique will result in a more accurate 
interface advection. 

By examining the fractional area in each cell pair at the surface, one of the condi- 
tions shown in Fig. 3 can be identified. For instance, if we define the volume 
fraction in the cell on the left as f,, and that on the right fb, case one corresponds 
to 0 <f. < 1, and fb = 0, case two corresponds to f, = 0 and 0 < fh < 1, and case nine 
corresponds to 0 <f, < 1 and 0 -cfb < 1. However, the exact surface orientation or 
the slope of the surface line is yet to be determined based on the given area frac- 
tions in the two cells. The technique presented below is designed to generate a 
unique description of the surface slope. The method for finding the surface slope for 
case 9 is discussed first. It is then shown that all of the other cases can be reduced 
to this case. 
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FIG. 3. Existing relations for two neighboring cells 

In order to be able to identify the surface orientation in case 9, one can ify 
four possible conditions by inspection. These four subcases of case 9 are s an 
Fig. 4. Figure 4a shows the interface line connecting the left sidewall to the right 

ewall; Fig. 4b shows the left sidewall to the bottom wall; Fig. 4c s the top 
to right sidewall; and Fig. 4d the top wall to the bottom wall. T etl-sod for 

rmining the surface line is given below. 

Subcase (a). Two neighboring cells can always be reoriented such that f, a&. 
The interface is assumed to be a simple line segment fitted th the boundary 
of two neighboring cells. Therefore, the interface can be repres bY 

y=ax+b, (1) 

where constants a and b are to be determined base on the known area fractions 
fh. Therefore, the area underneath the line will be 

c d 
FIG. 4. Possible interfacial structures for case 9 
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If the cell size is h x 12, then 
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f,h2 = iah’ + bh 

fbh2 = $ah” + bh. 

Solving for a and 6, 

Once the surface is reconstructed, the fluid flux moving from one cell to the other 
cell can be calculated as follows: Defining s = u St/h, where u is the fluid velocity at 
the boundary of the two cells and 6t is the time step in the calculations, the flux 
of fluid in the positive x direction (df ‘) will be (see Fig. 5) 

df’=s[a+b*-as/21 (5) 

and the flux in the negative x direction (i.e., if u is negative) is 

Sf- =s[a+b*+as/2]. (6) 

Subcase (b). The equations to be considered for this subcase are 

O=ast+b* 

f,=a/2+b* 

fh = (a,/2)(xd2 - 1) + b*(x,* - l), 

where xz =x6/h and xb is the point of intersection of the line segment and the cell 
bottom. This results in the following solutions for a and b*: 

a=2(fa-b*) 

b*=2C(fo+fJy’~l. 

(7) 

(8) 

h 

FIG. 5. Liquid flus calculation method for two neighboring interfacial cells. 
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The corresponding fluid fluxes are 

Q- = 
1 

fb if s+ 12~: 

s(a + b” + asi2) if s+ 1 <x$, 

Subcase (c 1~ Similarly, 

a = 2(ff, +fb - 3 + 2 -,+/( 1 -fa@ -f<,: -fb)i 

b* = 3(3 - 2f’, - $fb - 2 v’( 1 -fl)(2 -,f, -fb)) 

and 

41” = 
s(a + b* -as/Z), if s<S-.r$ 

s+f,- 1, if s> 1 -s; 

q- =s(a+b*+as/2), 

where .YY;T =X,/R, and s, is the interception point at the top cell boundary 

Subruse (d ). 

a= l/(X,*-X$) 

b* = xb*/(x,* - .rb* 1. 

ere the normalized points of intersection (x,* and CC:) are 

where 

Surface Identification 

Once we have developed a set of equations for each of the four different interface 
subcases shown in Fig. 4, we are ready to set up a criterion for determining the. 
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interface type by only inspecting the area fraction fields. That is, knowingf, and.f,, 
it is desired to determine the case that represents the surface orientation. For 
instance, the criterion for case one is given as follows. Based on Eqs. (1 ), (3), and 
(4), the equation for the surface line of Subcase (a) is 

Y=(fi,-L?)~~+~(!f,-~). 

We can see from Fig. 4a that 

Therefore, 

22(3f,-f,) 

and 

3fa -fb 30. 
We can also write 

~~~(2h)=(ff,-f~)2h+~(3f,--f,). 

This results in the following inequalities: 

(a) 

lb) 

2 2 3fb -f, Cc) 
and 

3fh-fa 3 0. (d) 

Noting that (a) is more restrictive than (c), based on our initial assignment of 
Jz >fb, the following equations can be obtained for-f, and fb of Subcase (a): 

3fb af, 

2a 3fa-.fb. 

The same type of analysis can be carried out for all 
results are 

Subcase (b). 

Subcase (c). 

(19) 

the other subcases. The final 

(20) 

f,+fb+Ju -fa)(2-.Lz-h)~ 1.5 

.L+h/3 +Ju -LH2-L-h)d $ 
(21) 



Subcase (d). 

ased on the above criteria a case distinction diagram can be constructed which 
WI identify different cases based on only fG and .fL+. Figure 6 shows that stick a 
diagram for case 9 as a function of .f, and Jrh. ifferent regions in this figixe 3-e 
defined as follows: 

Curve OB: 

Cuxve 0.4 : 

so- 3fb= 0. 

.f; - ,,(f,( 1 -f,) = 0.5. 

FIG. 6. Case distinction diagralr. for case 8. 
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FIG. 7. An interfacial representation for case 1. 

For a wet cell moving into a dry cell, such as in cases 1 and 2, the line segment 
must be found within the cell rather than at the cell boundary. The slope of this line 
segment is found by taking the average of the slopes found at the cell boundaries 
between the wet cell and its neighboring wet cells. Consider the 3 x 3 cell unit 
shown in Fig. 7. The cell pair (i, j) and (i + 1, j) represent case 1, where 
O<f,=h,j<l, andf,=fi+I.j=O. 

The slope of the line segment in cell (i, j) can be calculated by averaging the two 
slopes obtained with the same technique as described for case 9, by once using 
&-i and fi,j and the other time using & and fi,.++ r (e.g., the volume fractions of 
two neighboring cells to cell (i, j) in the vertical direction). Once the slope of the 
line segment is calculated the following criterion is developed to identify the type 
of the wet cell. By inspection four different subcases for a single wet cell (as shown 
in Fig. 8) are identified. Knowing the surface slope, /?, and the value of volume 
fraction, f,, a surface-type distinction diagram is developed to identify the surface 
type. This diagram, which is a plot off, versus fl, is shown in Fig. 9. For a pair of 
f, and B, only one of the four types of line segments in Fig. 8 can be identified. 
In Fig. 9 the curves which separate different regions are as follows: OA is 
f, = 1 - l/(28); OB is f, = l/(2/?); OC is fa = B/2; and OD is f, = 1 - 812. Upon 

3 4 

FIG. 8. Possible interfacial line-segment in a cell. 
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Time Step Area Change 

FIG. 10. A circular region moved across the computational domain. 

method is tested by moving a circular fluid region across the computational meshed 
domain. The test conditions are as follows. A uniform velocity field is given to the 
circular region, which is initially at the upper-left position. Given the size of the 
circle initially, a cell area fraction field is computed. FLAIR technique is then 
applied to the area fraction field with a time step just enough to move the fluid half 
a grid size to the right and half a grid size downward. The circular region is moved 
in this way for 20 time steps until the circle is moved out of its original position. 
The area fraction field thus obtained is then examined to see the error that is 
accumulated during the movement. From Fig. 10, which is obtained by plotting the 
point where the line segment intercepts the cell boundary, it is quite clear that the 
circle is moved with very good accuracy. The resultant error in the area change is 
also shown in Fig. 10. The area change is defined as the original circle area minus 
the area at any other time. The area at any time is calculated by adding all the 
area fractions. This is a good indicator of the accuracy of the method used for the 
interface advection. 

In order to demonstrate the difference between FLAIR method and the 
donor--acceptor method, a small segment of a circle is advected using both techni- 
ques. Figure lla shows the initial volume fractions of a small segment of a circle. 
Figure llb shows the results obtained using FLAIR method after two time steps, 
and Fig. llc shows the results from the donor-acceptor method at the same two 
time steps. The accuracy of FLAIR over donor--acceptor method is clearly shown 
by a one-to-one comparison of the volume fractions at the end of the calculation. 



bl b 

FIG. 1 I. Comparison of voiume fraction field advecxion Technique between donor-acceptor and 
FLGR methods: (a) original volume fraction field: (b j the new field using FL.hIR: and (; j the new Gels 
sing donor-acceptor. 

‘The donor-acceptor movement results in the loss of second surface layer. For 
instance, the initial volume fractions in the first and second layer of the third 
coiumn are 0.938 and 0.101, respectively. When the surface is advected asmg 
donor-acceptor method, the new volume fractioes of 0.997 and 0.00 are obtained. 
A better prediction of 0.935 and 0.098 is resulted by using the FLAIR method.. 

A two-dimensional elliptic fluid region is chosen to present .the techniq~~e for 
handling the free surface boundary conditions in the momentum equation and Aso 
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to test the accuracy of the technique. The initially elliptic fluid zone is described 
using a square mesh system. The surface of the ellipse crosses through the mesh 
system and generates fractional volume parameters in each of the boundary cells. 
The fractional areas are therefore initially assigned. The fractional areas for all the 
interior cells are set equal to one, and those for the exterior cells are set equal to 
zero. The following equations are solved for the capillary-driven viscous flow of the 
region described above. 

Governing Equations of Motion 

The two-dimensional, incompressible, constant properties Navier-Stokes equa- 
tions with free boundaries are solved. For this problem, the continuity, momentum, 
and Poisson’s equations are: 

au allzr aul; x+sx+T&= -$+A($+$) (24) 

(25) 

. 
(26) 

Boundary Conditions 

At the present time we are only considering the motion of a fluid zone in vacuum. 
Therefore, no shear forces are present at the fluid surface. Also, the effect of velocity 
gradients on the surface pressure is neglected. Hence, the boundary equation simply 
becomes 

(27) 

where R is the curvature at the surface and o is the surface tension. 

Method of Solution 

The equations of motion are solved using a fully implicit scheme having 
staggered grids. However, special care has to be taken in writing the finite difference 
equations for the surface cells. Based on inspection of all possible conditions at the 
surface, five situations can be identified. These five cases are shown in Fig. 12. Note 
that there is only one situation that wil result in case 1; four situations for case 2; 
four for case 3; four for case 4: and four for case 5. 

At the free surface, the momentum equation cannot be evaluated the same way 
it is in the interior of the fluid because the cells at the free surface have at least one 
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4 
FIG. 13. Possible cases of surface cell relations with neighborkg cells in momezum ceicuiations. 

cell boundary-facing vacuum. This makes the evaluation of the neighboring 
velocities in that direction impossible. Based on the marker and ceP1 method [ !Z]. 
ihe continuity equation is to be used for the surface cells to calculate the veiocity 
at the free surface. For a wet cell without any wet neighboring cells (i.e., case 4) 
there is no way that the velocity of the cell will be changed. As a matter oi fact, a 
wet cell without wet neighbors is considered a different computational domaiti from 
the major body of the fluid. Therefore, it is thrown away in the following :ompura- 
lion. For a wet cell with wet neighboring ceils except one face, the velocity compo- 
neni at that free surface is obtained by equating it to the required value obtained 

I I v--c I 

FTC. 13. Damping osciIlation of an originaily elliptic infinite cylinder. 
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FIG. 14. Internal velocity Field and shape of the drop at different times. 
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(f) 

FIG. 14-Continued 

from the continuity equation. For example, in case 2, L’~ = tli + uI - u2. For a wet 
cell with two dry faces, the velocity component at the free surface is equated to the 
velocity component in the opposite side. For example, in case 3, ~1~ = u, and c’~ = ~1~. 
For a wet cell with three dry faces, the velocity component at the free surface 
opposite to the wet side is set equal to that of the wet side. For the velocity compo- 
nent at the two opposing dry faces, the two velocities are assumed to retain their 
values. For example, in case 4, u2 = 11, and u2 = ~4~ = ~4~~ (subscript p refers to the 
value at the previous time step). 

Using the momentum equations for the interior cells and continuity equations for 
the surface cells, a set of equations relating pressure and velocities for all the cells 
can be set up. These equations can be solved using the boundary conditions. The 
only boundary condition in this problem is the pressure at the free surface. This 
pressure is obtained by the calculation of the surface curvature. The surface cur- 
vature is obtained by using the technique developed by Poo and Ashgriz [27]. Very 
briefly, this method uses a second-order polynomial. based on the area fraction field 
at the surface, to represent the local surface equation. Once the equation describing 
the surface is known, the surface curvature at each cell can be determined. 

Based on the above discussions, the solution procedure can be summarized as 
follows: (1) Specify the initial conditions for the surface geometry and velocities. 
(2) Move the surface based on these velocities and the FLAIR algorithm. (3) Find 
the surface curvature based on the cell volume fractions. (4) Calculate the surface 
pressure based on the local values of surface curvatures and Eq. (27). (5) Calculate 
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the pressure throughout the drop using Poisson’s equation. (6) Solve for the 
velocity held throughout the drop using the momentum equations. {7) Iterate 
between steps t 6) and (7) until convergence is achieved. (8 j Increment the time and 
repeat. 

The results for the motion of an initially elliptic drop are presented in Figs. 1.3 
and 161. Enitially, the major diameter of the ellipse is set equal to 1, and its minor 
diameter to 0.5. with mesh size of 0.01 and zero vefocities everywhere. 
because of the non-uniform curvature on the surface of the ellipse, there 
capillary driven flow. This flow will eventually damp out and the equilibrium condi- 
tl of stationary circular drop will be attained. The damping motion of the drop 
iS own in Fig. 13. The Reynolds number used for this case is 0.1, and the Weber 
number is 1.0. The Weber number is defined based on the initial major diameter of 
the ellipse, D. Because the drop’s initial velocity is zero, the velocity scale is obtained 
by se:trng the Weber number equal to 1 and then calculating the velocity scale r’rsm 
:! = ,.‘lq!pD. Figure 13 shows the drop shape at different times. It is observed that: 
due to high viscosity, the drop shape becomes circular within a few oscik.;iocs. 
Figures 14ae show the velocitv field inside the drop at different times. The osciha- 

e drop generates a recircuiation zone within it, which also damps out after 
the drop ceases motion. The smoothness of the surface after long computational 
times indicates the accuracy of this technique for surface movement and iherefore 
it has better curvature calculations. It is noteworthy that there exists an area loss 
in the computations because the actual shape of a surface cell is no1 used ir, the 
continuity equation, However, as other VOF techniques do, one can distribute ;he 
loss in volume fraction during the surface advection and reconstruction among he 
celis. such that the total area loss remains zero. However, in the presen; caicuIarinc 
we are more concerned with the presentation of the technique: therefore, no corxc- 
hns of that sort are made. 

CONCLUSIONS 

k ne-w technique of interface transport and reconstruction is developed for rhe 
numerical models using the volume of fluid (VOF) method. The basic features of 
this technique are as follows: The interface is assumed to be represented by a se’t 
of line segments fitted at the boundary of every t-wo neighboring surface csi!s. -4 
criterion is developed which identifies the orientation of the hare segment based only 
on the volume fractions of the two cells. This criterion is developed based on reahz- 
ing that there can be only a limited number of cases for arrangement of IWO 
neighboring cells. After the surface orientation is determined, the volume fraction 
field is updated by calculating the fluid flux across any two neighboring cells. it is 
shown that the flux line segment model for advection and interface reconswxtdon 

ue is more accurate in advection of the fraction of volume field 
than the more common donor-acceptor technique. 
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